Orbits for the adjoint coaction on quantum matrices

نویسندگان

  • M. Domokos
  • T. H. Lenagan
چکیده

Conjugation coactions of the quantum general linear group on the algebra of quantum matrices have been introduced in an earlier paper and the coinvariants have been determined. In this paper the notion of orbit is considered via co-orbit maps associated with C-points of the space of quantum matrices, mapping the coordinate ring of quantum matrices into the coordinate ring of the quantum general linear group. The co-orbit maps are calculated explicitly for 2× 2 quantum matrices. For quantum matrices of arbitrary size, it is shown that when the deformation parameter is transcendental over the base field, then the kernel of the co-orbit map associated with a C-point ξ is a right ideal generated by coinvariants, provided that the classical adjoint orbit of ξ is maximal. If ξ is diagonal with pairwise different eigenvalues, then the image of the co-orbit map coincides with the subalgebra of coinvariants with respect to the left coaction of the diagonal quantum subgroup of the quantum general linear group. 2000 Mathematics Subject Classification. 16W35, 16W30, 20G42, 17B37, 81R50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantum homogeneous space of nilpotent matrices

A quantum deformation of the adjoint action of the special linear group on the variety of nilpotent matrices is introduced. New non-embedded quantum homogeneous spaces are obtained related to certain maximal coadjoint orbits, and known quantum homogeneous spaces are revisited. MSC: 16W35; 20G42; 17B37; 81R50

متن کامل

Quantum Co-Adjoint Orbits of the Group of Affine Transformations of the Complex Line

We construct star-products on the co-adjoint orbit of the Lie group Aff(C) of affine transformations of the complex line and apply them to obtain the irreducible unitary representations of this group. These results show the effectiveness of the Fedosov quantization even for groups which are neither nilpotent nor exponential. Together with the result for the group Aff(R) (see [5]), we thus have ...

متن کامل

Quantum Co-adjoint Orbits of the Group of Affine Transformations of the Complex Straight Line Do Ngoc Diep and Nguyen Viet Hai

We construct start-products on the co-adjoint orbit of the Lie group Aff(C) of affine transformations of the complex straight line and apply them to obtain the irreducible unitary representations of this group. These results show effectiveness of the Fedosov quantization even for groups which are neither nilpotent nor exponential. Together with the result for the group Aff(R) [see DH], we have ...

متن کامل

Quantum Co-adjoint Orbits of the Real Diamond Group

We present explicit formulas for deformation quantization on the coadjoint orbits of the real diamond Lie group. From this we obtain quantum halfplans, quantum hyperbolic cylinders, quantum hyperbolic paraboloids via Fedosov deformation quantization and finally, the corresponding unitary representations of this group.

متن کامل

THE ORBIT STRUCTURE OF THE GELFAND-ZEITLIN GROUP ON n× n MATRICES

In recent work ([9],[10]), Kostant and Wallach construct an action of a simply connected Lie group A ≃ C( n 2 ) on gl(n) using a completely integrable system derived from the Poisson analogue of the Gelfand-Zeitlin subalgebra of the enveloping algebra. In [9], the authors show that A-orbits of dimension ( n 2 ) form Lagrangian submanifolds of regular adjoint orbits in gl(n). They describe the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008